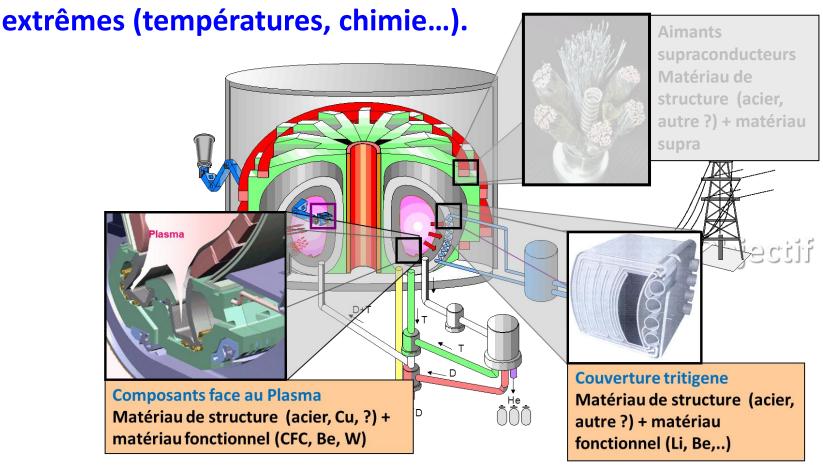


Les Matériaux Face au Plasma

Objectif
Les composants face au plasma
La couverture tritigène

ITER vs. Reacteur

Jean-Marc.Martinez@iter.org


ITER: Réacteur Thermonucléaire Expérimental International Le « chemin » (en latin) vers une démonstration de la faisabilité et la sûreté de l'énergie de fusion.

the way to new energy

© P. Magaud – S. Panayotis, C. Portafaix & V. Barabash -

Objectif

Un défi majeur à résoudre dans un réacteur à fusion thermonucléaire: Le développement de matériaux résistants à des environnements

Zoom sur les matériaux face au plasma et ceux composants la couverture tritigène

Objectif

Un défi majeur des composants face au plasma à résoudre dans un réacteur à fusion thermonucléaire:

Le développement de matériaux résistants

Objectif: Diminuer la fréquence de remplacement des composants afin d'améliorer la disponibilité du réacteur, et donc le coût de l'électricité produite.

A titre d'exemple, il y a 80% de disponibilité pour un réacteur à eau pressurisée.

Choix des materiaux selon la fonction du composant et des sollicitations

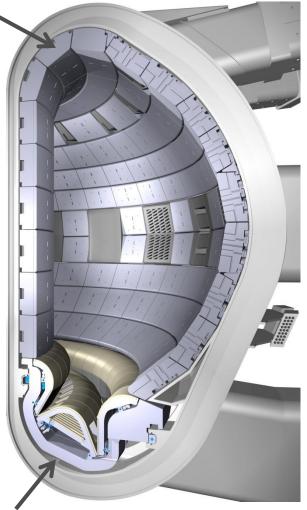
Rappels: Les composants face au plasma

Chambre à vide parfaitement hermétique à double paroi en acier inoxydable entre lesquelles circulera l'eau de refroidissement. Située à l'intérieur du cryostat, elle est le siège de la réaction de fusion et constitue une partie de la première barrière de confinement. Les composants face au plasma sont fixés à sa paroi interne.

Sa taille détermine le volume du plasma de fusion et donc l'énergie produite

diamètre interne = 6m, Largeur = 19m Hauteur = 11m

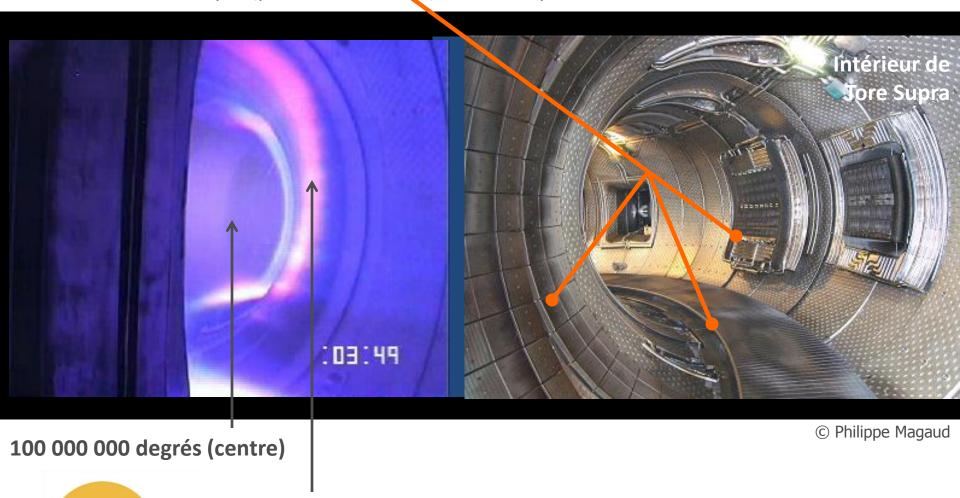
Masse (sans CFP) = 5000t.

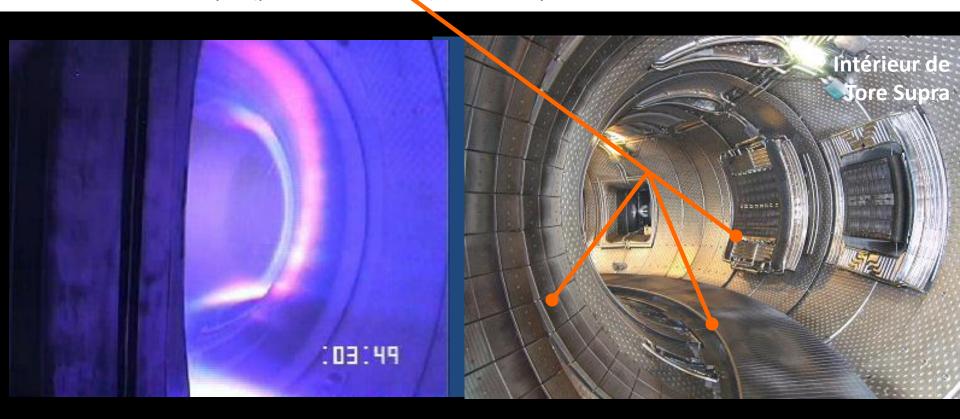


Modules de couverture

Rappels:

Les composants face au plasma

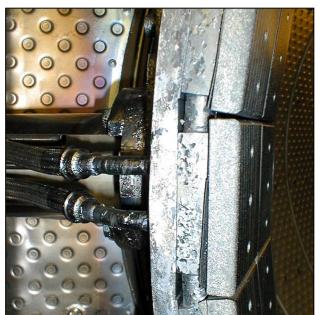

- Les modules de couverture protègent l'intérieur de la chambre à vide contre les charges thermiques élevées et contre les neutrons de haute énergie.
- Le «divertor» est l'un des composants fondamentaux d'ITER. Courant sur le «plancher» de la chambre à vide, il assure l'extraction de la chaleur, des cendres d'hélium et d'autres impuretés issues du plasma.

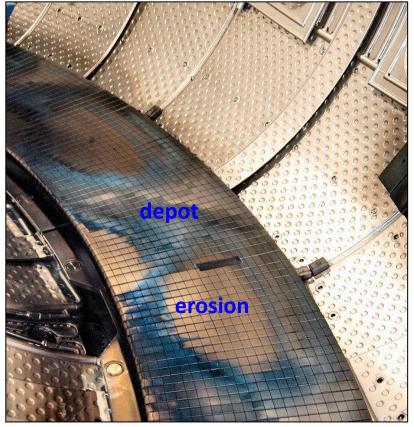


Ils composent la première surface matérielle vue par le plasma exposée à de nombreuses contraintes : thermique (plusieurs MW/m²), neutronique, érosion...

1 000 degrés (paroi)

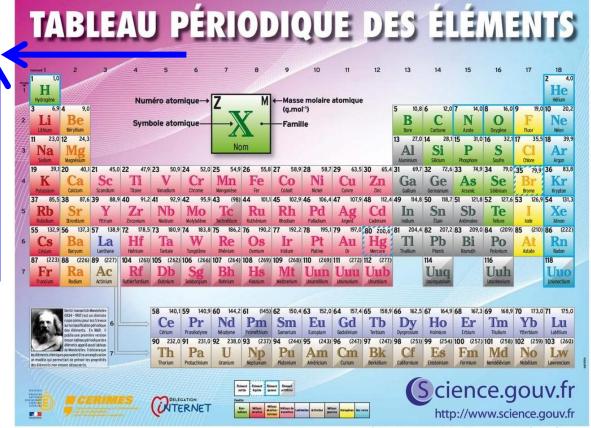
Ils composent la première surface matérielle vue par le plasma exposée à de nombreuses contraintes : thermique (plusieurs MW/m²), neutronique, érosion...


La fonction principale est **de minimiser la pollution du plasma**Rappel : impuretés → dégrade les performances plasma
→ Choix des matériaux très important !


© Philippe Magaud

Exemple de dégradations de parois face au plasma

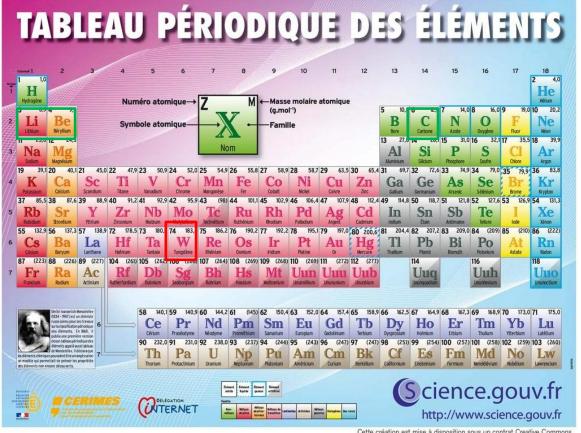
Depot, Erosion, Fonte...



A la recherche du matériau idéal!

#01 : Compatibilité avec le plasma (dilution, rayonnement)	Z faible	

Z faible



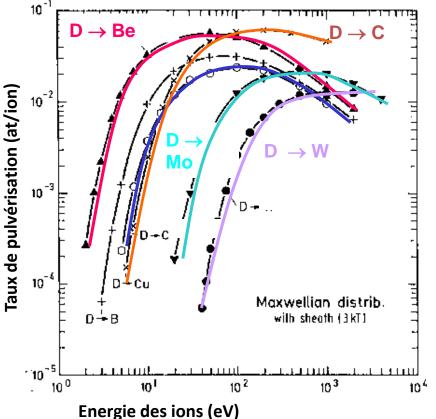
A la recherche du matériau idéal!

Elements courants

#01 : Compatibilité avec le plasma (dilution, rayonnement)	Z faible	Li, Be, C

A la recherche du matériau idéal!

Elements courants


#01 : Compatibilité avec le plasma (dilution, rayonnement)	Z faible	Li, Be, C
#02 : Minimiser la pollution du plasma	Taux de pulvérisation faible	

A la recherche du matériau idéal!

Elements choisis

#01 : Compatibilité avec le plasma (dilution, rayonnement)	Z faible	Li, Be, C W	
#02 : Minimiser la pollution du plasma	Taux de pulvérisation faible	Be (~3 eV), C (~8eV) W(~80eV)	

- \sim 2-3 eV <T_{plasma bord}<100 eV
- \rightarrow 15eV < E_{ions} <500 eV (gaine)

Seuil: D impact sur Be 3 eV C 8 eV W 80 eV

Taux de pulvérisation important (et stable) pour Be & C à partir d'energies faibles.

W: Pas d'erosion pour des energies faibles

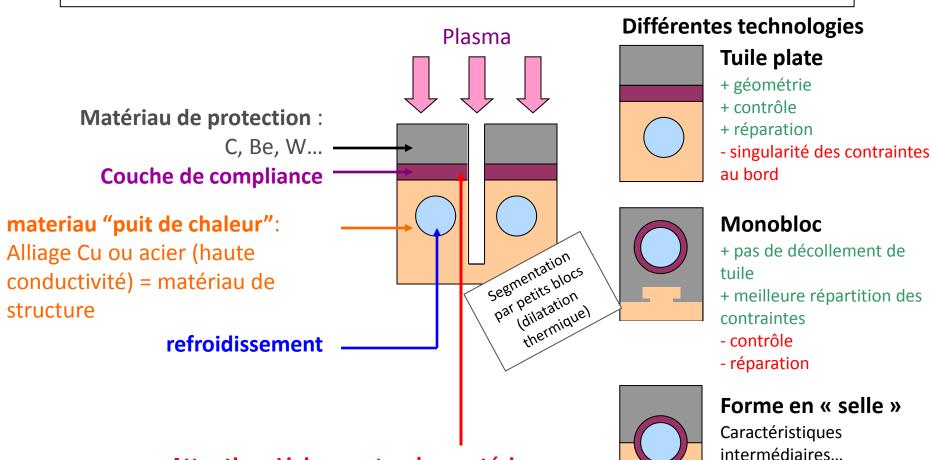
A la recherche du matériau idéal!

Elements courants

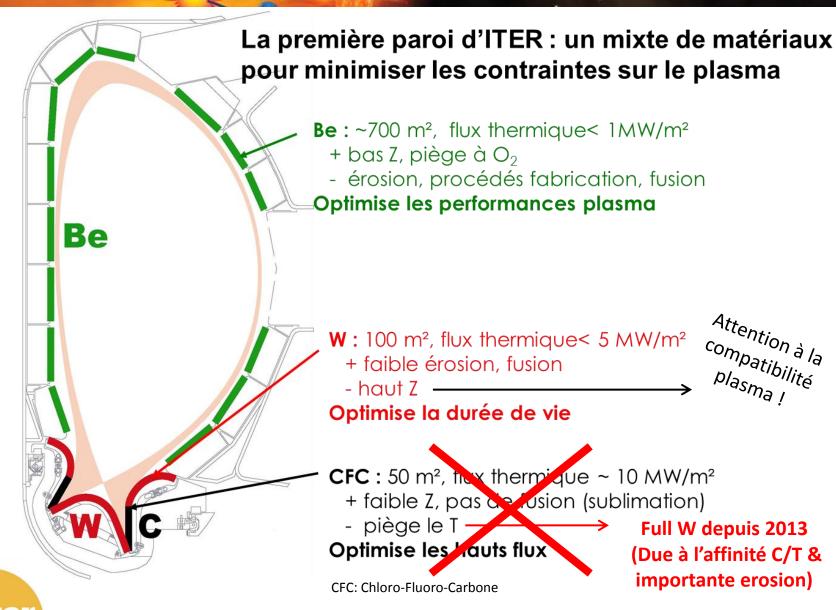
#01 : Compatibilité avec le plasma (dilution, rayonnement)	Z faible	Li, Be, C W
#02 : Minimiser la pollution du plasma	Taux de pulvérisation faible	Be (~3 eV), C (~8eV) W(~80eV)
#03: Fonct. Haute température	T _{Fusion} élevée	Li (180°C), Be (~1280°C), C (~3370°C) W(~3400°C)
#04 : Refroidissement « facile »	Conductivité thermique élevée	Be (~300W/m.K), C (50-800 W/m.K), W (~180W/m.K)
#05 : Compatibilité chimique (H)	affinité	Be (Ok), C (chimie H!), W (Ok)

+ tenue sous irradiation, tenue au choc thermique (fissuration, propagation...), fabricabilité (mise en forme, soudabilité), activation, toxicité...

2 stratégies:

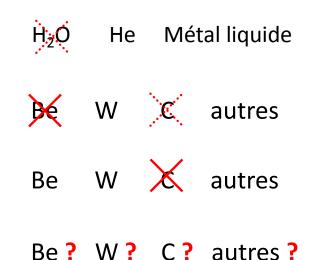

Optimise les performances plasma(→ flexibilité avec la physique) → bas Z → carbone = matériau idéal (des installations précédentes)

Optimiser la durée de vie → haut Z → W ? (Optimisation des installations actuelles)



Principes d'un composant face au plasma

Matériau fonctionnel (CFC, Be, W) + Matériau de structure (acier, Cu, autres?)


Attention: Liaison entre des matériaux aux propriétés thermomécaniques très différentes point faible des Composants face au plasma

Quels choix pour un réacteur?

Des flux thermiques proches de ceux d'ITER mais des contraintes supplémentaires :

- 1 − Refroidir mais pour produire de l'énergie
 → T de sortie réfrigérant élevée
- 2 Une compatibilité avec les conditions de bord d'un plasma de réacteur (taux d'érosion...)
- 3 Des critères de sûreté à respecter (inventaire tritium...)
- 4 Durée de vie sous irradiation neutronique

A ce jour, le tungstène comme matériau de première paroi est probablement le meilleur choix (« le moins mauvais » voire « le seul » ?)

Bilan des Composants Face Plasma

Technologie actuelle:

Tore Supra, tuiles CFC, H₂O, 10MW/m²

Validée

 \longrightarrow

WEST: Full W

Technologie ITER: W, Be, CFC: 10-20 MW/m², H₂O

De nombreux concepts (Be, CFC, W) et technologies (brasage, soudage...) testés avec succès en LABORATOIRE.

mais de la R&D est encore nécessaire pour améliorer la fiabilité de fabrication (>> passage à l'échelle industrielle)

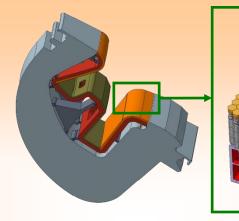
Technologie réacteur:

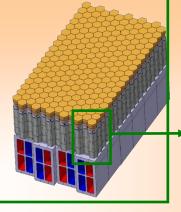
Pas de solution optimale actuellement →

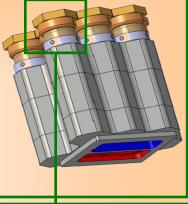
Un important programme de R&D est nécessaire pour atteindre le niveau de crédibilité requis

Bilan des Composants Face Plasma

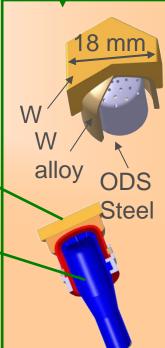
Ex de R&D (CEA/CNRS): Assemblage par gradient de fonction W Tungstène pur Composition variable Cuivre tungstène Propriétés comparables à celles du CuCrZr, Conductivité thermique excellente Cu-W • Tenue mécanique très supérieure à celle du cuivre doux Possibilité de piloter le 10% gradient de manière à 20% homogénéiser le flux Collaboration CEA thermique à la paroi de la et canalisation d'eau EHT = 20.00 kV 5266

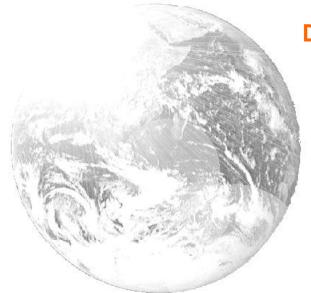

Un important programme de R&D est nécessaire pour atteindre le niveau de crédibilité requis




© Philippe Magaud

Divertor W refroidi He 10MW/m²




Un important programme de R&D est nécessaire pour atteindre le niveau de crédibilité requis

Principes de la couverture tritigène

Matériau fonctionnel (Li, Be...) + Matériau de structure (acier, autre?)

Rappels: Conditions de base de la fusion nucléaire sur terre

Deutérium + Tritium

Particule alpha

+ E_{Fusion}

- gaz rare,
- particule chargée: confinée
 par le champ magnétique
- emporte 3.6MeV: chauffe le plasma
- particule neutre:sort du plasma
- Emporte 14MeV

Principes de la couverture tritigène

Matériau fonctionnel (Li, Be...) + Matériau de structure (acier, autre?)

Rappels: Conditions de base de la fusion nucléaire sur terre

Deutérium + Tritium

→ Hélium + neutron + E_{Fusion}

Tritium: **Existe en très faible quantité** (1T pour 10¹⁷ H), Radioactif (b⁻ 5.7 keV, T_{1/2}=12.3 ans, T_{biologique}=10j)

- production d'origine naturelle :
- production d'origine humaine :
 rejets essais nucléaires atmosphériques
 rejet des réacteurs de fission PWR
 réacteurs civils à eau lourde

(inventaire ~ 18.5 kg)

Consommation ITER → 17.5 kg pendant sa vie

Consommation REACTEUR 1000 MWe → 150 kg / an

→ production indispensable

Le **deutérium** peut être extrait de l'eau de mer (ressources supérieures à la durée de vie du soleil)

Principes de la couverture tritigène

Matériau fonctionnel (Li, Be...) + Matériau de structure (acier, autre?)

Rappels: Conditions de base de la fusion nucléaire sur terre

Deutérium + Tritium → Hélium + neutron + E_{Fusion}

Lithium + neutron → Tritium + Hélium + E

Deutérium + (E_{Fusion} + E)

Le **lithium** terrestre est plus abondant que l'étain ou le plomb et même dix fois plus abondant que l'uranium.

Le lithium peut aussi être tiré de l'eau de mer (0.17g/m3).

Les ressources en lithium terrestre sont estimées à quelques milliers d'années. Cette limite est repoussée à plusieurs millions d'années si le lithium est tiré de l'eau de mer.

Le **deutérium** peut être extrait de l'eau de mer (ressources supérieures à la durée de vie du soleil)

Principes de la couverture tritigène

$$D + T \longrightarrow {}^{4}\text{He} + n$$

$$Li + n \longrightarrow {}^{4}\text{He} + T$$

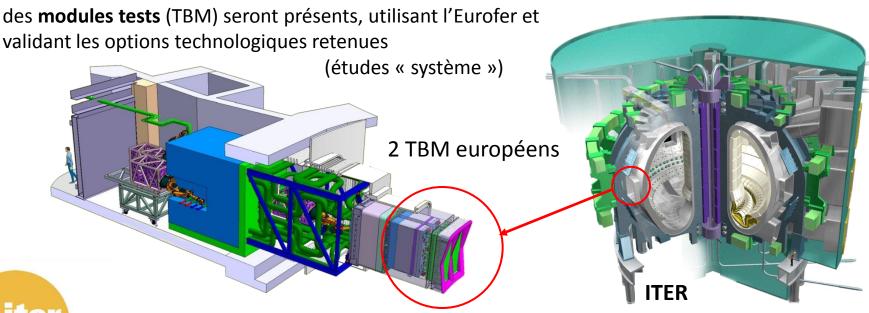
$$Li + D \longrightarrow 2 {}^{4}\text{He}$$

3 FONCTIONS:

- 1. Production de tritium
- 2. Récupération de l'énergie du neutron de 14MeV
- 3. Protection des composants (aimants) du neutron de 14MeV

DONC : Couverture tritigène, c'est un composant formé :

- de ⁶Li ou du Li_{nat}, sous forme liquide (LiPb) ou solide (céramique : ex Li₂TiO₃)
- obligation d'utiliser un multiplicateur de neutrons (ex : Pb ou Be)
- un réfrigérant (eau, gaz, autres...)
- un matériau de structure...



Bilan de la couverture tritigène

Actuellement:

- La possibilité de produire « in-situ » le tritium dans un réacteur est démontrée dans différents concepts par des calculs 3D
- De la R&D est en cours pour :
 - valider de façon expérimentale les points durs (fabrication)
 - la mise au point des matériaux de structure

ITER, utilise de l'acier 316L et ne possède pas de couverture tritigène mais...

Bilan de la couverture tritigène

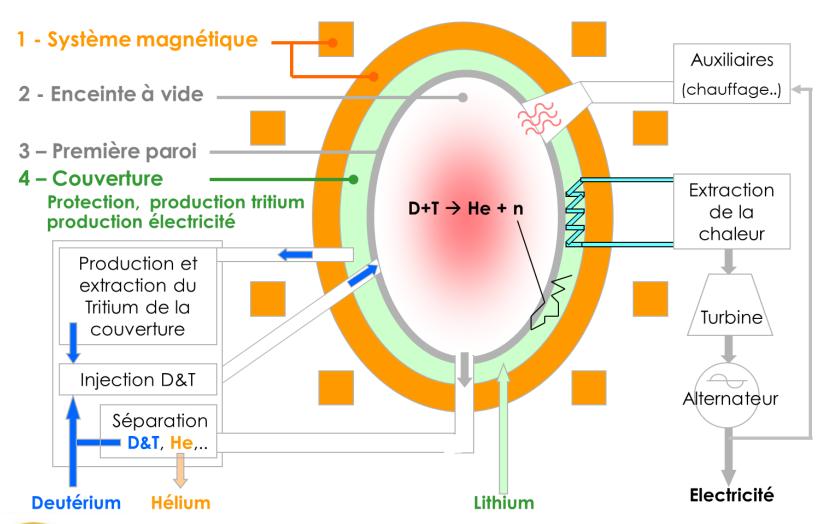
Actuellement:

- La possibilité de produire « in-situ » le tritium dans un réacteur est démontrée dans différents concepts par des calculs 3D
- De la R&D est en cours pour :
 - valider de façon expérimentale les points durs (fabrication)
 - la mise au point des matériaux de structure

ITER, utilise de l'acier 316L et ne possède pas de couverture tritigène mais...

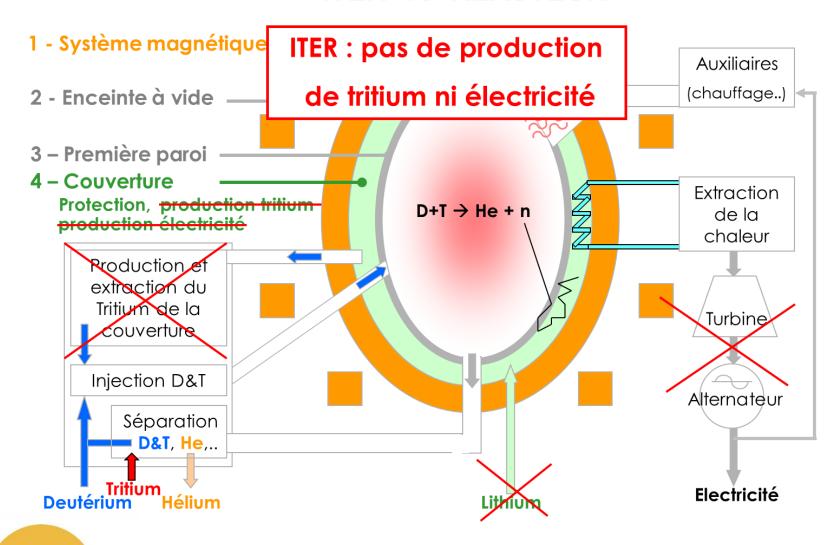
des **modules tests** (TBM) seront présents, utilisant l'Eurofer et validant les options technologiques retenues (études « système »)

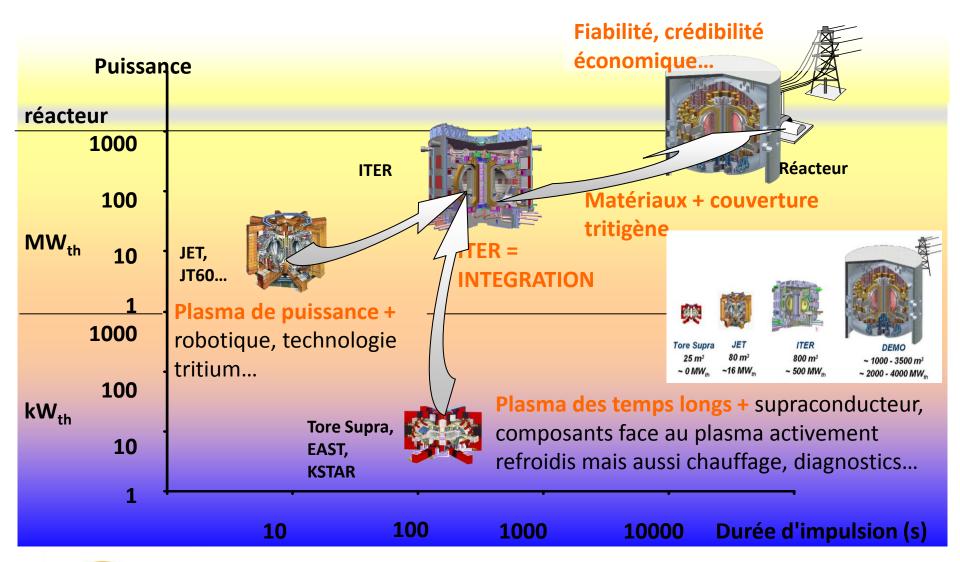
Projet en parallèle d'ITER.


La validation expérimentale de la tenue des matériaux de structure aux neutrons de 14 MeV (effet He, H) est impérative \rightarrow programme de modélisation + une source de neutrons de 14MeV

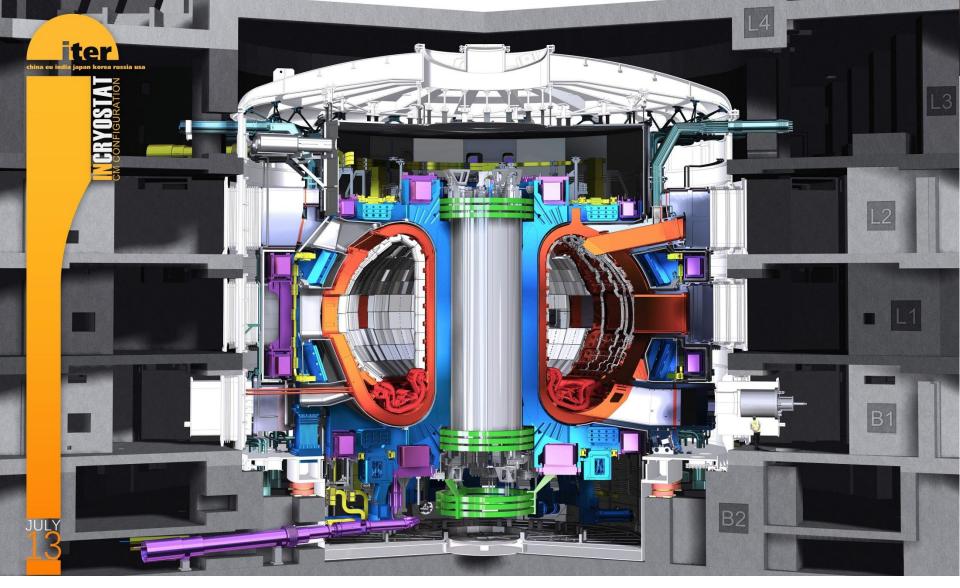
IFMIF International Fusion Materials Irradiation Facility / Canon à neutron qui sera construit au Japon

ITER vs. Reacteur


ITER vs REACTEUR



ITER vs. Reacteur


ITER vs REACTEUR

ITER vs. Reacteur

jean-marc.martinez@iter.org

Merci pour votre attention Questions / Débats