Quel sera le premier réacteur à fusion : Tokamak ou Stellarator ?

Jef Ongena

Directeur de Recherches Laboratoire de Physique des Plasmas Eoole Royale Militaire Bruxelles

Centrale Energies 4 Octobre 2017 Paris, France Principes des réactions de fusion

Energie de liaison

Note: L'énergie de liaison est positive car c'est une énergie qu'il faut fournir à un noyau pour le dissocier en nucléons séparés

Origine du gain d'énergie dans les réactions de fission/ fusion

La différence en énergie de liaison entre les noyaux légers et leurs produits de fusion

Masse du nucléon A

Maximum pour ~ ⁶²Ni: conséquences pour les étoiles lourdes

Gain d'énergie dans les réactions de fusion

L'énergie de liaison du ⁴He est exceptionnellement grande

Masse du nucléon A

Si ⁴He est le produit de la réaction → maximum d'énergie

Les réactions de fusion dans le soleil et dans les machines terrestres

Les réactions de fusion dans le soleil

Group #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period																		
	1	Fusion															2	
	Н																He	
2	3	4					5	6	7	8	9	10						
	LI	Be													N	0	F	Ne
3	11	12	2 1g												15	16	17	18
	Na	Mg													Р	S	CI	Ar
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	ĸ	Са	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
6	55	56	*	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ва		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	87	88	**	104	105	106	107	108	109	110	111	112	113	114	115	116	(117)	118
1	Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh	(Uus)	Uuo
* Lanthanoi		malda	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
		noids	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
** Actinoi		Inoldo	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
		molds	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

De l'hélium produit à partir de 4 protons ?

Réaction très difficile et lente (main bien pour l'humanité....) Soleil: chaque seconde 4 millions de tonnes → énergie

La température du soleil

Température à la surface De la loi de Stefan-Boltzmann et sa luminosité L:

L = $4\pi\sigma R^2_{\text{soleil}} T^4_{\text{surface}} \rightarrow T_{\text{surface}} = 5780 \text{K}$ (σ = constante de Stefan-Boltzmann = 5.670×10⁻⁸ J m⁻² K⁻¹ s⁻¹)

Température au centre: Par proton: l'énergie thermique (= 3/2 kT) = l'énergie potentielle gravitationelle au centre:

 $1.5k T_{centre} = Gm_p M_{soleil}/R_{soleil}$ $T_{centre} = 15\ 600\ 000\ K$ (G= constante gravitationelle =6.6726 10⁻¹¹ Nm²kg⁻² k=constante de Boltzmann=1.38 10⁻²³ J K⁻¹ m_p = masse du proton = 1.6726 × 10⁻²⁷ kg.

La réaction p-p dans le soleil

Référence intéressante au sujet du soleil

La fusion terrestre

La fusion terrestre: utiliser les isotopes d'hydrogène

Les réactions de fusion terrestres 'les plus simples'

La réaction de fusion terrestre la plus 'simple'

Comparons les réactions de fusion p-p et D-T

Sur terre (D-T)

Dans le soleil (p-p)

La réaction D-T est

10²⁵ fois plus probable que la

réaction p-p

Les réactions de fusion: effet tunnel

Températures nécessaires pour réaliser la fusion sur terre

Maximum pour la réaction D-T à 100-150 millions de degrés C

Sections efficaces pour différentes réactions (échelle relative)

Température du plasma en millions de degrés

Les machines à confinement toroidales Principes and réalisation pratique

La fusion magnétique: principes

La fusion magnétique: principes

Les particules chargées suivent les lignes de champ magnétiques par suite la force de Lorentz

La fusion magnétique: principes

Comment limiter les pertes aux extrémités d'un cylindre ? Deux solutions possibles

- 'fermer' le champ aux extrémités
 - ➤ Systèmes lineaires

- 'fermer' le champ sur lui-même
 - ➤ Configurations toroidales

Mais: séparation des charges dans un champ toroidal...

Raison: Rayon de giration varie avec B et v $_{\perp}$ $\rho_L = \frac{mv_\perp}{qB}$

Champ toroidal: lons et électrons se séparent → Champ électrique

Champ magnétique + électrique: lons et électrons quittent le plasma

Réaliser une configuration toroidale stable: Option 1

Tokamak

L'anneau de plasma constitue le secondaire d'un transformateur Le courant de plasma qui y circule est induit par le primaire du transformateur (~100kA - 10MA)

Réaliser une configuration toroidale stable: Option 1

Tokamak (1951 Sakharov et Tamm)

тороидальная камера с магнитными катушками "chambre toroidale avec bobines magnetiques"

Joint European Torus (JET) Le plus grand tokamak du monde (à Culham, à 10km d'Oxford)

Joint European Torus (JET)

Joint European Torus (JET) Machine Européenne de fusion (près d'Oxford) Le plus grand tokamak du monde

Enceinte à vide	3.96m x 2.4m
Volume du plasma	80 m³ - 100 m³
Courant de plasma	jusque 5 MA
	dans la configuration 'divertor'
Champ toroidal	iusque 4 Tesla

;

Construction de JET (1983)

Vue de l'intérieur de JET

Antennes de Chauffage

198.103c

Première paroi Avant: Tuiles de carbone Maintenant: Tuiles de béryllium et tungstène

1.1%

Divertor

Systèmes de chauffage radiofréquence du JET

J.Ongena

Fusion Status and Outlook

Varenna, Lago di Como, 21 July 2014

Intérieur du JET avec et sans plasma

Exemple d'une expérience fusion (JET)

150 millions de degrées pendant une minute

Aussi: Tore Supra (France): 6min30s, LHD (Japon): 30min

Une décharge de tokamak normale

- Augmenter le champ magnétique toroidal
- Induire un courant de plasma
- Chauffer le plasma
- "Eteindre" sur plusieurs secondes

Qu'est-ce qu'une disruption ?

- Effondrement rapide de l'énergie thermique du plasma
- ..et du courant de plasma
- Instabilités MHD détruisent la structure magnétique du plasma

Une disruption en détail

- Sans bon confinement le plasma se refroidit MA rapidement
- Un plasma froid est très résistif et induit une diminution
 MJ rapide du courant de plasma

Edge Localized Modes (ELMs)

- Oscillations périodiques observées dans le bord du plasma
- Influence l'érosion chimique et physique de la première paroi

Intensité D_{α} dans le divertor

Extrapolation de la taille des disruptions et ELMs vers ITER

Où en est-on dans la recherche en fusion (ligne tokamaks) ?

Le développement de la performance des plasmas dans les tokamaks est plus rapide que celle du nombre de transistors dans les circuits intégrés

Le défi de la fusion: un véritable mini-soleil sur terre

Tokamaks

Après JET

ITER (International Thermonuclear Experimental Reactor)

ITER

En construction à Cadarache Petit rayon: 6.2m Grand rayon: 2.0m Durée de la décharge: 300s Puissance de fusion: 500MW Amplification de puissance: > 10

Quelle: ITER 2001

Fabrication des bobines toroidales au Japon

Réaliser une configuration toroidale stable: Option 2

Stellarator

Des bobines complexes en 3D créent directement un champ hélicoidal

Réaliser une configuration toroidale stable: Option 2

Wendelstein 7-X

Grand rayon: 5.5 m Petit rayon (moyenne): 0.53 m Volume de plasma: 30 m³ Champ toroidale: 3 T

Nombre de bobines magnétiques: 70 Durée de la décharge: 30 min.

Wendelstein 7-X : le plus grand Stellarator du monde

Stellarators dans le monde

TJ-II Madrid (E)

Wendelstein 7-AS Garching (D)

HSX Madison (USA)

Confiner un plasma de 100 millions de degrées

- Gain d'énergie si : $nT\tau_E \sim 10^{21} \text{ m}^{-3}$.keV.s ~ 1 bar.s
- n (densité) = 10²⁰ particules/m³
- T (température) ≥ 10 keV
- τ_E (temps de confinement) ≥ 4s

- facile!
- → réalisé
- difficile, taille machine

Principl

ision research

VUB, 16 september 2016

Comparaison: Stellarator / Tokamak

Tokamak (symmétrique)

Courant de plasma

- + Bobines simples
- Durée de décharge limitée
- Instabilités dues au courant de plasma
- + Performances nettement meilleures
- + Plasmas D-T
- + 16 MW (JET) envisagé 500MW (ITER)

Stellarator (3D)

Absence de courant de plasma

- Bobines complexes (3D)
- + Opération en continu
- + Plasma stable
- 1 ¹/₂ génération après les tokamaks
- Plasmas H, envisagé D
- Pas de puissance de fusion encore

Comparaison: ITER / Stellarator-reactor

Comparaison: Temps de confinement réalisé

~ 10x plus grand pour les tokamaks

Pour en savoir plus

Nature Physics, May 2016

"Insight Section" Sur la fusion nucléaire

66 pages des dernières développements dans:

- La fusion magnetique
- La fusion inertielle
- Recherches sur les matériaux
- Simulations avancées

http://www.nature.com/nphys/journal/v12/n5/index.html

Le dernier article de notre laboratoire

Nature Physics Octobre 2017

Apparu aujourd'hui

Nouvelle méthode de chauffage des machines à confinement magnétique.

Page de couverture: La propagation des ondes électromagnétiques dans un plasma de fusion

http://www.nature.com/nphys/journal/v13/n10/covers/index.html

WELL, MY STELLARATOR WATCH OUT ! MY NEVER STOPS: - You WATCH OUT! TOKAMAK iS PULSED. -BANG! BANG!