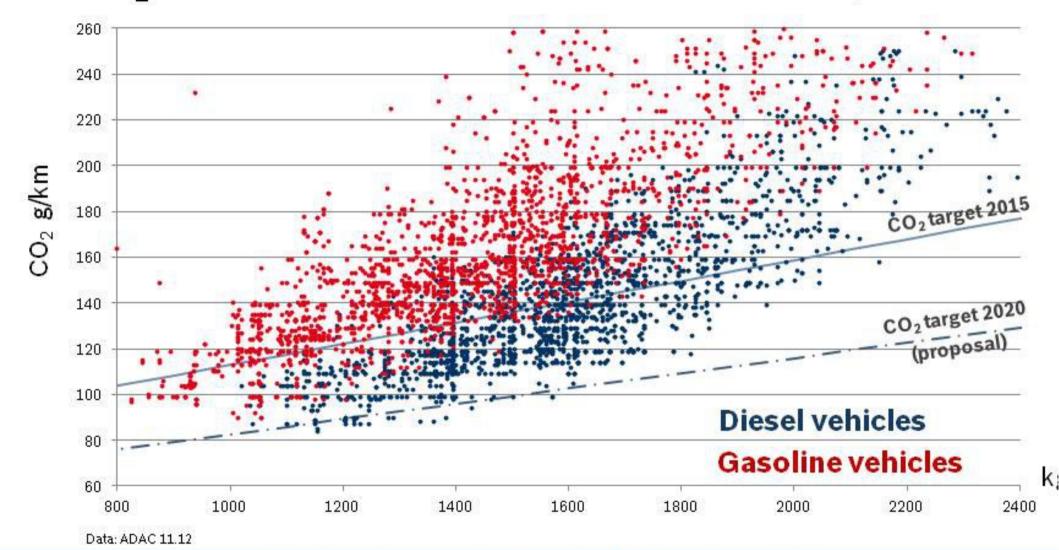


Shaping the Future - Innovations for Efficient Mobility

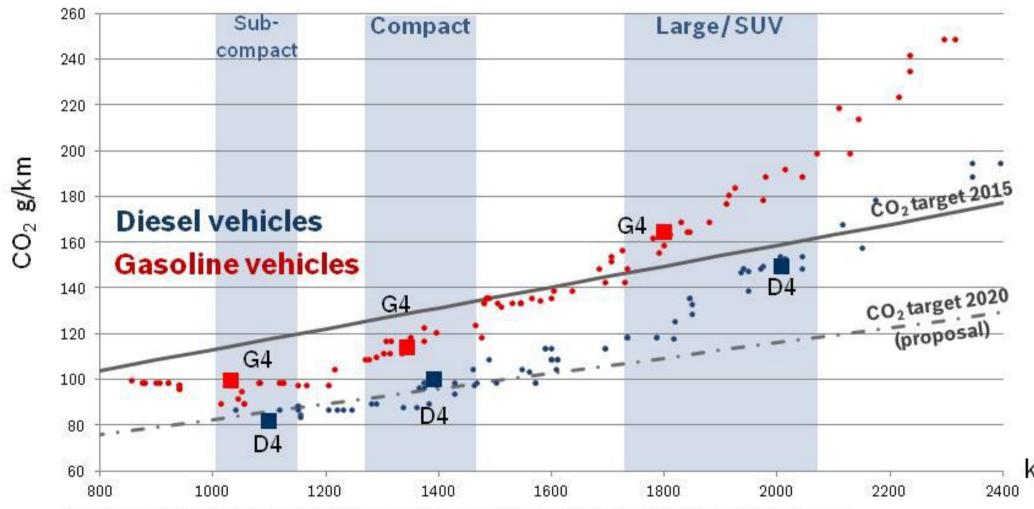
Christian Mecker

Vice President - Diesel Systems, Robert Bosch France


Overview: current and upcoming regulations

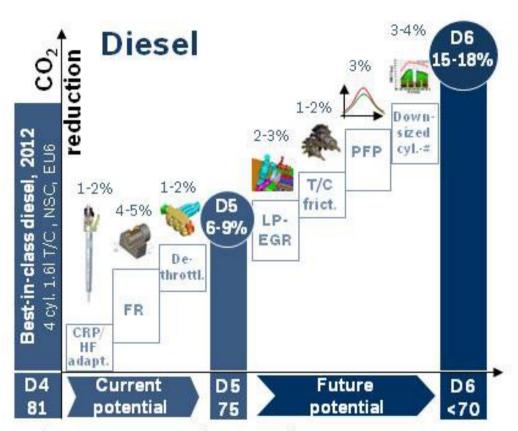
Year	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	
Emission standards	Euro 5			Euro 6					post-Euro 6			
CO ₂ target				130 g/km 100% fleet					95 g/km proposal, 100% fleet			
NEDC/ WLTC	NEDC-based testing								WLTC-based testing			
RDE	development and measurement phase							limit ≤ cf • crit. emission limit				

Upcoming emissions standards require considerable technological improvements

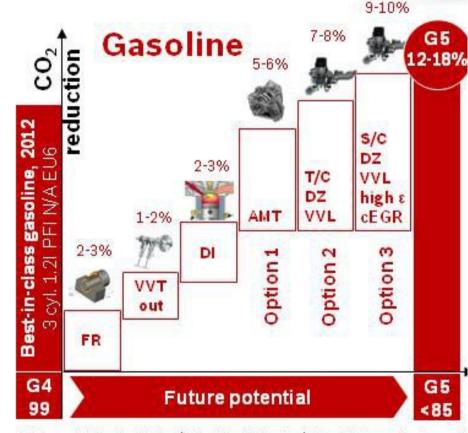

CO₂ emissions of vehicles on sale in EU, 2012

CO2 targets more challenging for heavier vehicles

Best-in-class vehicles in EU, 2012

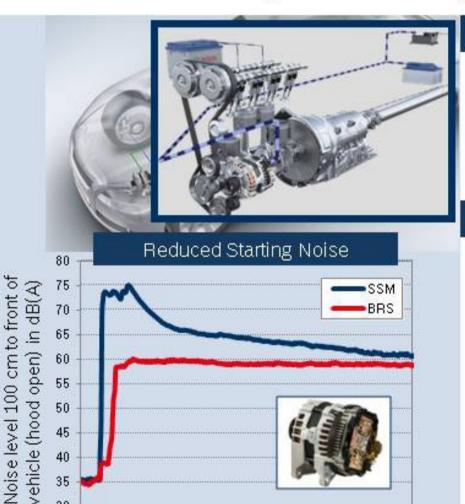


G4/D4 = segment-specific Bosch reference powertrains based on best-in-class vehicles in 2012; Subcompact: 1040-1100 kg, 60 kW; Compact: 1330-1400 kg, 100 kW; Large/SUV: 1800-2000 kg, 150 kW (4 cylinder)-190 kW (6 cylinder); All: NEDC


Best-in-class vehicles already within 2015 targets in 2012

CO₂-reduction packages for subcompacts*

CRP/HF= common-rail pressure / hydraulic flow | **LP-EGR**= low-pressure EGR system **FR** = friction reduction | De-Throttl. = de-throttling engine | **PFP**= low-peak firing pressure | **T/C** = turbocharger | **NSC** = NOx storage catalyst


WT = variable valve timing | DI = direct injection | FR = friction reduction engi AMT = automated manual transmission | T/C = turbocharger | S/C = super-ch DZ = downsizing | WL = variable valve lift | high ε = high compression cEGR = cooled exhaust gas recirculation | N/A = naturally aspired

Diesel and gasoline powertrains offer further CO₂-reduction potential of up to 18%

Boost recuperation system (BRS) - "Eco Hybrid"

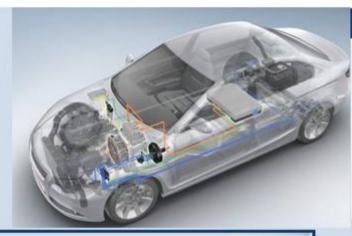
Features

- Electrical machine delivering up to 10 kW
- Energy supply from brake energy recuperation
- Electrical boost function

Customer benefits

- Approx. 7% fuel-efficiency improvement in NEDC (without coasting, basis: start-stop)
- Very short & comfortable ICE restart feasible, enabling start-stop and coasting
- Reduced starting time, noise and vibration
- Cost-efficient entry system for electrification
- Fun to drive (e-boost)

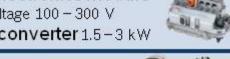
BRS: cost-effective CO2 reduction combined with greater driving comfort


SSM: start-stop starter motor, ICE: internal-combustion engine

time in s

30

Strong hybrids (HEV)



High-voltage battery Lithium-ion battery 0.8 - 1.5 kWh

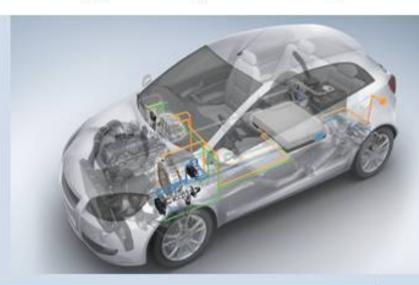
Power electronics module DC link voltage 100 - 300 V

DC/DC converter 1.5-3 kW

Electric motor traction drive 20 - 40 kW

Features

- Electric motor, starting from 20 kW (CO₂-optimized)
- Integrated or separate motor generator (IMG, SMG)
- Electrical energy supply from brake energy recuperation
- E-drive capability (defined by battery size)
- Future development: further cost reduction via component integration and economies of scale


Customer benefits

- Up to 15 % fuel-efficiency improvement in NEDC
- Best-in-class urban fuel economy of non-plug-in powertrains
- Green image (electric drive) + driving enjoyment (e-boost)
- Increasing TCO benefit for end-customer

Concept offers CO₂ reduction and electric driving experience

Plug-in hybrids (PHEV)

High-voltage battery

Lithium-ion battery 4 – 12 kWh

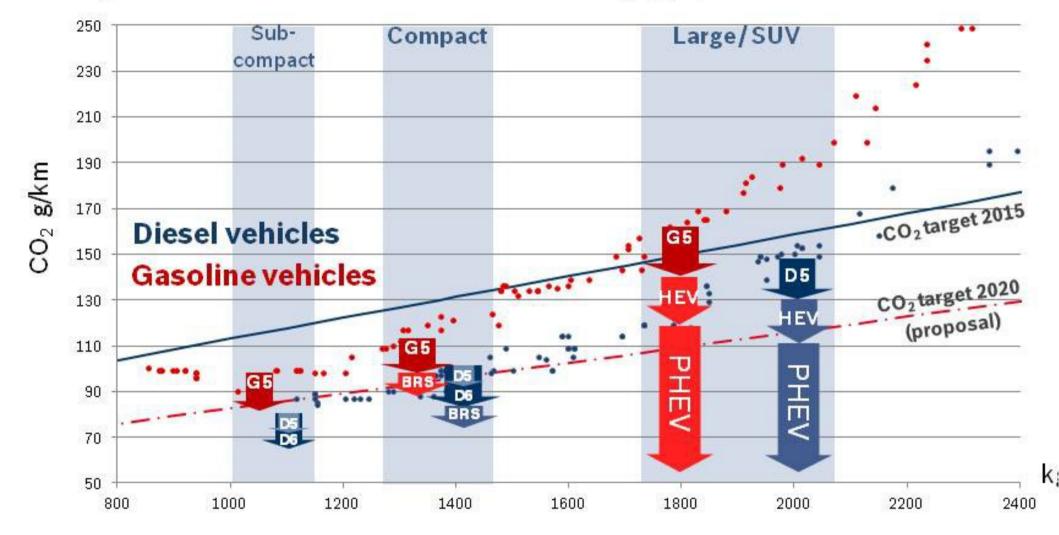
Electric motor

traction drive 30 - 80 kW

Features

- Combination of efficient ICE* & electric driving (comfort
- CO₂ reduction and driving enjoyment
- Attractive due to legislation and consumer expectation:
- Electrical energy supply from charge spot (230/400 V)
- Optimal layout in terms of cost/benefit and customer acceptance: 50 km el. range and 120 km/h max. el. spe
- Future: market penetration from upper vehicle segment

Customer benefits


- 50-90% fuel-efficiency improvement in NEDC (e-range)
- Electric driving ranges sufficient to allow access to low-emission zones
- Green image (electric drive) + driving enjoyment (e-books)

Concept combines advantages of ICE and EV at very low CO2 emission level

*ICE: internal-combustion engine

Hybrid solutions to close CO₂ gaps

Different Hybridization foreseen to fulfill market requirement

Strategy to achieve proposed CO₂ target for 2020

Subcompact

Highly efficient powertrain is sufficient and cost effective, no electrification is necessary

Hydraulic Hybrid as a possible new product offer

Compact

Highly efficient powertrain with best cost/benefit ratio + light electrification for gasoline powertrain (boost recuperation system)

Large/SUV

Highly efficient powertrain with appropriate electrification for maximum cost efficiency (HEV and PHEV)

