DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

Conférence Centrale-Energie

D'ITER aux réacteurs: des défis scientifiques et technologiques.

R. Sabot, G. Bonhomme & WEST team

Remerciements à J. Bucalossi, P. Ghendrih, P. Magaud, P Monnier-Garbet, B. Saoutic, ... pour leurs transparents

roland.sabot@cea.fr

- ITER vs le réacteur
- Défis scientifiques pour ITER et le réacteur
 - Chauffage du plasma (cf. présentation G. Bonhomme)
 - Interaction plasma paroi
 - Mesures et contrôle du plasma
- Défis technologiques pour ITER et le réacteur
 - Télémanipulation
 - Génération et gestion du tritium
- Les progrès récents
- GB: Au-delà d'ITER: les matériaux pour le réacteur

UN REACTEUR

R. Sabot, G. Bonhomme – D'ITER aux réacteurs: les défis scientifiques | Webminaire Centrale – Energie | 16/02/2022 | 4/26

Performance

- Q \ge 10 pendant ~400 s
- Explorer le régime stationnaire (Q=5)
- Flux neutronique (14 MeV) moyen > 0,5 MW/m², fluence > 0,3 MW a/m²

Fonctionnement

Plasma en combustion: confinement des α, auto-chauffage par le plasma
 → équilibre, instabilités

 $Q=10 \ \Rightarrow \ P_{\alpha}=2\times P_{add}$

Test de modules de couverture tritigène à haute température

- Disponibilité des technologies essentielles pour la fusion : aimants supraconducteurs, maintenance robotisée, composants à haut flux
 - Démonstration de la sûreté de fonctionnement et du faible impact sur l'environnement

L'essentiel de la physique du réacteur devrait être démontrée par ITER

Rapide augmentation de Q avec $nT_i\tau_E$ pour Q>10 \rightarrow faible extrapolation entre ITER et DEMO

Défis scientifiques pour ITER et le réacteur

- Composants face au plasma
- Mesures et contrôle du plasma

C'est la **première surface matérielle** vue par le plasma. Elle est exposée à de nombreuses contraintes : thermique (plusieurs MW/m²), neutronique, érosion...

Impuretés dégrade les performances plasma:

- → Elément légers (Be, C) → ionisation totale → rayonnement faible, C=1-2% acceptable
- → Eléments lourds (W) → rayonnement très élevé \Rightarrow il faut C<10⁻⁴

R. Sabot, G. Bonhomme – D'ITER aux réacteurs: les défis scientifiques | Webminaire Centrale – Energie | 16/02/2022 | 9/26

Effet géométriques + pertes par rayonnement

Flux $\Gamma_{\parallel}^{E} \div 10 \text{ à } 100$ Γ_{div}^{E} = 3 à 20 MW/m²

Carbone impossible dans ITER (ou réacteur), car il piège le tritium → Le divertor d'ITER est en tungstène (Be sur les murs)

Cea WEST: tester les composants du divertor d'ITER

Après une phase I (2016-2021) avec un divertor non-refroidi, le divertor WEST basé sur les composants similaires à ITER a été achevé en 2021.

- Divertor bas
 - Composants type ITER W:
 <20 MW/m2
- Divertor haut
 - CuCrZr avec dépôt W: 8 MW/m2
- Baffle (déflecteur)
 - CuCrZr avec dépôt W: 5 MW/m2
- Anneau de garde interne
 - Tuiles en BN ou W massif:
 1 MW/m2
- Panneau de protection
 - Panneau inox: 0.3 MW/m²
- Upper port protection
 - Tuiles CuCrZr avec dépôt W
- Limiteurs externes
 - Limiteur mobile W massif ou BN:
 1 MW/m2
 - Protection d'antennes: CFC dépôt W 10 MW/m2

Objectif: test des éléments du divertor longue durée & P>10 MW/m²

Des mesures pour piloter, contrôler et étudier

R. Sabot, G. Bonhomme – D'ITER aux réacteurs: les défis scientifiques | Webminaire Centrale – Energie | 16/02/2022 | 14/26

Plus de 40 diagnostics sont installés sur WEST

R. Sabot, G. Bonhomme – D'ITER aux réacteurs: les défis scientifiques | Webminaire Centrale – Energie | 16/02/2022 | 15/26

Surveillance temps réel du divertor et des parois

Caméras IR pour mesurer la température des CFP

- ▶ 1 camera grand angle (60° field of view, 3 to 8 mm/pixel)
- 6 visées complete divertor (2x30°)
- 1 Very High Resolution divertor view (0.1 mm/pixel)
- ► 5 antennes de chauffage

Développement d'outils IA pour le contrôle TR et la classification des évènements.

R. Sabot, G. Bonhomme – D'ITER aux réacteurs: les défis scientifiques | Webminaire Centrale – Energie | 16/02/2022 | 16/26

Relaxation régulière de la barrière de transport externe en mode H $\Delta E_{ELM} \sim 0, 03 - 0, 05 E_{plasma}$

> ELM impacts on JET vessel

> > 0.5

0.4

0.3

0.2

44.15

44.17

44.19

Dans ITER, cela peut conduire à des flux d'énergie et de particules très élevés sur le divertor et les parois, érosion, influx d'impuretés, voir fonte locale du divertor.

ELMs time trace

Dans ITER, il faudra maîtriser l'amplitude des ELMs pour éviter les endommagements.

Plusieurs techniques pour 7 fréquence des Elms et/ou 🏼 l'amplitude

- Injection de glaçons de deutérium au bord
- > Déplacement vertical rapide du plasma (kicks)
- Perturbation magnétique au bord (ergodisation lignes de champ)

Design activity underway with good progress \rightarrow integration challenge

Les disruptions (fin brutale du plasma) engendre des flux important d'énergie et de particules qui peuvent endommager les composants face au plasma.

- ⇒ Dans ITER, il faudra détecter les précurseurs des disruptions pour
 - les éviter
 - les atténuer

Les mesures temps réel de différents paramètres (courant plasma, position vertical, rayonnement...) permettent de prédire l'apparition d'une disruption:

- réaliser un arrêt prématuré du plasma
- si besoin réaliser une injection massive de gaz pour que le plasma perde son énergie par rayonnement avant de toucher la paroi ou les composants face au plasma.

Flux thermique sur la paroi lors d'une disruption à JET

Défis technologiques pour ITER et le réacteur

- Télémanipulation
- Génération et gestion du tritium

Après le premier plasma, tout devra être télémanipulé (installation, soudure, découpe, retrait ...)

Dans WEST, nous disposons d'un bras robot pour faire des inspections pendant les campagnes expérimentales.

https://irfm.cea.fr/Phocea/Video/index.php?id=62

Les 3 fonction des couvertures tritigènes:

1. Production de tritium

⁷Li + n \rightarrow ³T + ⁴He + n - 2.5 MeV ⁶Li + n \rightarrow ³T + ⁴He + 4.8 MeV exothermique, perte neutron

- 2. Récupération de l'énergie du neutron de 14MeV
- 3. Protection des composants (aimants) du neutron de 14MeV

Couverture tritigène = composant nucléaire formé :

Structural Materials

- ✓ Ferritic/Martensitic Steels
- ✓ Vanadium Alloys
- ✓ Composites SiC/SiC

Main Coolants (relevant T for good efficiency)

- ✓ Pressurized Water (PWR)
- \checkmark Helium (and CO₂)
- ✓ Liquid Metals : Li, Pb-17Li

→ Différentes combinaisons menant à différents concepts

$D + T \longrightarrow He + n$

Sur ITER, le tritium sera apporté sur site, mais des maquettes de couvertures tritigènes seront testées: Test Blanket Module (TBM)

3 queusots pour 6 TBM, qui diffèrent par leur type de matériau tritigène (LiPb ou céramique), leur caloporteur (H2O ou He)...

EU: Helium Cooled Lithium Lead EU: Helium Cooled Pebble Bed JA: Water Cooled Ceramic Breeder KO: Helium Cooled Ceramic Reflector CN: Helium Cooled Ceramic Breeder IN: Lithium Lead Ceramic Breeder

Progrès récents

Le tokamak EAST a réalisé fin décembre une décharge stable de 1056 secondes. Avec une énergie injectée de l'ordre de ~1.75GJ, le record de Tore Supra de 2003 (durée 630 s, énergie injectée 1.17 GJ) est battu.

R. Sabot, G. Bonhomme – D'ITER aux réacteurs: les défis scientifiques | Webminaire Centrale – Energie | 16/02/2022 | 25/26

En décembre 2021, le JET, le tokamak européen près d'Oxford (UK) a produit 59 MJ d'énergie de fusion.

C'est plus du double du précédent record de 1997.

https://www.youtube.com/watch?v=kTLtmiCELL8

Fusion Power (MW) 12 10 8 6 4 22MJ 2 0 0.0 2.0 3.0 4.0 5.0 6.0 7.0 1.0 time (s)

https://www.euro-fusion.org/news/2022/european-researchers-achieve-fusion-energy-record/

14

R. Sabot, G. Bonhomme – D'ITER aux réacteurs: les défis scientifiques | Webminaire Centrale – Energie | 16/02/2022 26/26